













カ京フ業大学 NANJING TECH UNIVERSITY

预制拼装桥墩轻量化研究

土木工程学院 胡皓 18817840343 h834497178@126.com



明德 厚学

沉毅 笃行





# 轻量化推广的意义



- 减少现场节段拼装工序,加快现场施工进度。
- 节约材料,预制立柱盖梁均减少不少于30%的混凝土。



内容导览: 2.1 方案介绍 2.2 试验研究 2.3 数值分析

# 第二部分 空心盖梁的试验与理论研究

# 方案介绍——分片预制盖梁方案







### 方案介绍——U型截面整体预制空心盖梁方案(C60混凝土





## 方案介绍——U型截面整体预制空心盖梁方案(C80混凝土





#### 方案介绍——倒U型截面整体预制空心盖梁方案 (C80混凝土)









### 国内有代表性预制盖梁材料用量统计表

| 项目∂           | 盖梁类型。                    | 盖梁宽<br>(m)↔        | 材料类型↔       | 用量₀           | 用量<br>  単位↩         | 桥面↓<br>尺寸↓ | 指标↔                 | 指标↔<br>单位↔                           | $fm_{\ell}$<br><u> <math>1</math></u><br><u> <math>1</math></u><br><u> <math>2</math></u><br>$3/m_{\ell}^{2}$<br><u> <math>3</math></u><br><u> <math>3</math></u><br><u> <math>3</math></u><br><u> <math>3</math></u><br><u> <math>3</math></u><br><u> <math>m^{2}</math></u><br><u> <math>\ell</math></u><br><u> <math>m^{2}</math></u><br><u> <math>\ell</math></u><br><u> <math>m^{2}</math></u><br><u> <math>m^{2</math></u> | 24.6             | 混凝土<br>(UHPC)⊷ | 55.3+         | $m^3 e^3$      | 25//20                                                                            | 0.0737.0 | $m^{3}/m^{2} r^{3}$ |                      |
|---------------|--------------------------|--------------------|-------------|---------------|---------------------|------------|---------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|---------------|----------------|-----------------------------------------------------------------------------------|----------|---------------------|----------------------|
|               |                          |                    | 混凝土(C50)₽   | 145.6.        | m <sup>3</sup> ₽    |            | 0.194~              | $m^{3}/m^{2} c$                      | )<br>(力)<br>(力)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (整体预制)。          | 24.6*          | 普通钢筋↔         | 22344.4        | kg₽                                                                               | 25×30¢   | <b>29.79</b> ₽      | $kg/m^2 \phi$        |
| S26₽          | ハ辺形や                     | 23.934.            | 普通钢筋↔       | 18806.9       | kg₽                 | 25×30+     | 25.08 0             | kg/m <sup>2</sup> e                  | 未足                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                | 预应力筋↔         | 2033.6         | kg₽                                                                               |          | 2.71.0              | $kg/m^2 {\rm e}$     |
|               | (分二节段)。                  |                    | 预应力筋↔       | 6084.5 e      | kg₽                 |            | 8.11@               | kg/m <sup>2</sup> e                  | 越东                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 六边形切角↔           |                | 混凝土(C60)∘     | 119~           | $m^3 {\rm e}$                                                                     |          | 0.133 @             | $m^3/m^2  c^2$       |
|               | N NI 777                 |                    | 混凝土(C40)↩   | 65.56+        | m <sup>3</sup> e    |            | 0.137.              | m <sup>3</sup> /m <sup>2</sup>       | 路。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (中间分两            | 23.9+          | 普通钢筋↔         | 18195+         | kg₽                                                                               | 25.5×35÷ | 20.39+2             | kg/m <sup>2</sup> v  |
| S6∉           | 六边形↔                     | ⊷<br>I).∞ 15.295.∞ | 普通钢筋。       | 6785.1 e      | kg.e                | 16×30₊     | 14.14.0             | kg/m²⇔                               | жЦ <i>4</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 段)。              |                | 预应力筋↔         | 5477₽          | kg₽                                                                               |          | 6.14+               | kg/m <sup>2</sup> v  |
|               | (整体预制)。                  |                    | 预应力路。       | 1561.7        | kau                 | 10, 000    | 3 25                | $k\sigma/m^2$                        | 八山流山辛沕                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · 猫生 沙           |                | 混凝土(C60)₀     | 119.0          | m <sup>3</sup> «                                                                  |          | 0.133 @             | $m^3/m^2  c$         |
|               |                          |                    | 10/座/1/1/10 | 110.1         | Kg.⇔                |            | 0.161               | Kg/III +                             | (方案)。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 23.9+          | 普通钢筋↔         | 18195.         | kg₊                                                                               | 25.5×35¢ | 20.39+2             | $kg/m^2  {\rm e}$    |
| 嘉闵            | 嘉闵 倒 T 形。<br>高架。 (上下分层)。 |                    | 祀衆⊥(00)     | 119.1*        |                     |            | 0.101               | III-/III-@                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                | 预应力筋↔         | 5477₽          | kg₽                                                                               |          | 6.14.0              | $kg/m^2 \phi$        |
| 高架↩           |                          | 23.4+              | 普週钢筋↔       | 28093₽        | kg₽                 | 24.7×30₽   | 37.91₽              | kg/m².₀                              | C60U 型空心盖梁。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 混凝土(C60)↔      | <b>89.1</b> - | m <sup>3</sup> |                                                                                   | 0.100~   | $m^3/m^2 c^2$       |                      |
|               | (                        |                    | 预应力筋↔       | 5353 <i>+</i> | kg₽                 |            | 7.22*               | kg/m²⇔                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 型空心 血采。          | 23.646.        | 普通钢筋↔         | 15583.0        | kg₽                                                                               | 25.5×35₽ | 17.46.              | kg/m <sup>2</sup> .  |
| 东钱            | <b>拓形</b> 。              |                    | 混凝土(C60)₀   | 96₽           | m <sup>3</sup> +2   | 25.5×30₽   | 0.125               | $m^3/m^2 \phi$                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (万茶)↔            | 预应力筋↔          | <b>5970</b> ₽ | kg₽            |                                                                                   | 6.69₽    | kg/m <sup>2</sup> . |                      |
| 湖。            | (敕休                      | 24.156             | 普通钢筋。       | 10286.7.0     | kg₽                 |            | 13.45.0             | $kg/m^2 c$                           | C80U型空心盖梁。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | エルションチの          |                | 混凝土(C80)ℯ     | <b>77.4</b> +  | $m^3  {}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 25.5×35¢ | 0.087.              | $m^3/m^2 e^3$        |
| 1901.€        | (金座)如何)~                 |                    | 预应力筋↔       | 6079₽         | kg₽                 |            | 7.95₽               | $kg/m^2  _{\scriptscriptstyle \phi}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 型空心盂架+<br>(主要)   | 23.646+        | 普通钢筋↔         | 14326.         | kg₽                                                                               |          | 16.05+              | kg/m <sup>2</sup> .  |
| \\$\ <b>?</b> | なら正と                     |                    | 混凝土(C60)₽   | 93.5+         | $m^3  \mathrm{e}^3$ |            | 0.127               | $m^3/m^2{\rm e}$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (刀杀)≈            |                | 预应力筋↔         | <b>5970</b> ₽  | kg₽                                                                               |          | 6.69.               | kg/m <sup>2</sup> ~  |
| 101 PA        | 理ルを                      | 23.5 @             | 普通钢筋↔       | 14850@        | kg₽                 | 24.5×30¢   | 20.200              | $kg/m^2 \phi$                        | C 90 /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 山田内心主            |                | 混凝土(C80)₽     | 71.4 e         | $m^3  {}_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |          | ⇔ 0.080             | $m^3/m^2  c$         |
| 邱合↩           | (整147)则利)↔               |                    | 预应力筋↔       | 4634.8        | kg₽                 |            | 6.31 -              | kg/m <sup>2</sup> e                  | C80 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | リU 型全心血<br>か(亡安) | 23.646         | 普通钢筋↔         | 13964.0        | kg₽                                                                               | 25.5×35+ | 15.65 @             | kg/m <sup>2</sup> v  |
| Merche        | 六边形↔                     |                    | 混凝土(C50)↔   | 95.9+         | m <sup>3</sup> ₽    |            | 0.128               | $m^3/m^2 \phi$                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | €(刀杀)≈           |                | 预应力筋↔         | <b>5970</b> ₽  | kg₽                                                                               |          | 6.69₽               | $kg/m^2  \mathrm{e}$ |
| 湘府            | (中间分两                    | 24.2+              | 普通钢筋↔       | 9207.4        | kg₽                 | 25×30+     | 12.28+              | kg/m <sup>2</sup> v                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                |               |                |                                                                                   |          |                     |                      |
| 路。 段)。        |                          | 预应力筋↔              | 4969₽       | kg₽           |                     | 6.63 @     | kg/m <sup>2</sup> . |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                |               |                |                                                                                   |          |                     |                      |
| H             |                          |                    |             |               |                     |            |                     | -                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                |               |                |                                                                                   |          |                     |                      |





#### 轻量化盖梁试验参数统计表

| 试件编号 | 缩尺比     | 混凝土强度/用量                  | 预应力数量                       | 试件特征   |
|------|---------|---------------------------|-----------------------------|--------|
| PB-1 | 1: 3.08 | C60 / 3.96 $m^3$          | 24根Φ <sub>s</sub> 15.2      | 实心截面   |
| PB-2 | 1: 3.08 | C60 / 3.96 m <sup>3</sup> | 。<br>24根 <b>Φ</b> 。15. 2    | 分两片    |
| PB-3 | 1: 3.24 | C60 / 2.35 m <sup>3</sup> | 24根①。15. 2                  | 开口朝上U型 |
| PB-4 | 1: 3.24 | C80 / 2.20 $m^3$          | 20根①。15. 2                  | 开口朝上U型 |
| PB-5 | 1: 2.92 | C80 / 3.20 $m^3$          | 。<br>20根Φ <sub>s</sub> 15.2 | 开口朝下倒U |

## 试验研究--

## -原型整体预制盖梁PB-1







(a) 钢筋笼绑扎、模板架立

- (b) 钢筋笼端面
- (c) 粘贴应变片



(d) 浇筑混凝土





(e) 盖梁、墩柱拼接

(f) 张拉预应力

整体现浇盖梁试件制作

# 试验研究——分片预制盖梁PB-2







(a) 分片钢筋笼 (b) 湿接缝泡沫板

(c) 焊接横向钢筋

分片预制盖梁试件制作









(b) 倒 U 型截面盖梁

(a) U 型截面盖梁

空心盖梁试件制作

# 试验研究——加载装置和加载方案



南京コ業大学 NANJING TECH UNIVERSITY



加载至破坏

## 试验结果分析——整体预制盖梁试件





PB-1 整体实心截面试件裂缝模态示意图

- 直到加载至工况6(荷载基本效应组合),整体式  $\triangleright$ 盖梁试件才在两支承墩柱之间的跨中位置处顶面首 先开裂。
- 继续加载,东侧及西侧悬臂根部附近顶面位置相继  $\geq$ 开裂。随着荷载进一步增大,3条主要裂缝沿着南 北两侧面及跨中向下开展,并且有新裂缝不断生成、 加密。
- 加载至1.7倍荷载基本组合后裂缝数量基本饱和,  $\triangleright$ 不再有新裂缝生成,之后3条主要裂缝继续向下开 展,盖梁跨中剪力较小,因此裂缝基本沿着两侧面 (d) 竖直开展,靠近盖梁两侧悬臂根部的裂缝受剪力影 响自初始开裂位置指向盖梁内侧斜向下开展。
- 直到加载至2.0倍荷载基本组合,盖梁悬臂根部及  $\triangleright$ 跨中处下缘受压区混凝土几乎同时压溃,试件呈现 弯曲为主的破坏形态。







白京工業大學

NANJING TECH UNIVERSITY





PB-1 整体实心截面盖梁试件破坏形态:

(a) 整体破坏形态; (b) 西侧; (c) 东侧; (d) 南侧; (e) 北侧

## 试验结果分析——分片预制盖梁试件















PB-2 分片预制盖梁试件破坏形态:

(a) 整体破坏形态: (b) 西侧: (c) 东侧: (d) 南侧: (e) 北侧

PB-2 分片预制盖梁试件裂缝模态示意图

- 加载至工况4(荷载频遇组合)不久后,分片预制盖梁试  $\triangleright$ 件在两支承墩柱之间的跨中位置处顶面首先开裂。
- 继续加载至工况5(荷载标准组合),东侧及西侧悬臂根 部附近顶面位置相继开裂。随着荷载进一步增大,3条主 要裂缝沿着南北两侧面向下开展,并且有新裂缝不断生 成、加密。
- 加载至1.1倍荷载基本组合后,盖梁分片处初始开裂,并  $\geq$ 沿着顶面纵向开展。加载至1.5倍荷载基本组合后裂缝数 量基本饱和,不再有新裂缝生成,之后3条主要裂缝继续 向下开展,随着盖梁分片处纵向开裂,盖梁扭转刚度逐 渐减小,扭转引起的剪应力增大,盖梁跨中的裂缝沿着 侧面斜向下开展,靠近盖梁两侧悬臂根部的裂缝受剪力 影响自初始开裂位置指向盖梁内侧斜向下开展。
- 直到加载至1.8倍荷载基本组合,盖梁悬臂根部处下缘受  $\geq$ 压区混凝土相继被压溃,与整体预制盖梁试件类似,分 片预制盖梁试件也呈现弯曲为主的破坏形态。

## 试验结果分析——U型截面空心盖梁试件 (C60混凝土)





PB-3 C60 混凝土 U 型截面空心盖梁试件裂缝模态示意图

- 加载至工况5(荷载标准组合)不久后,C60混凝土U型截 面空心盖梁试件在两支承墩柱之间靠近墩柱的位置首先 开裂。
- 继续加载至工况6(荷载基本组合),东侧及西侧悬臂根 部附近顶面位置相继开裂,跨中裂缝宽度有所增大。随 着荷载进一步增大,裂缝的数量增多加密,开裂位置也 逐渐由悬臂根部往端部发展。最外侧加载点附近出现倾 斜角度较大的斜裂缝,沿着最外侧空腔腹板斜向开展。
- 加载至工况11(1.5倍荷载基本组合)时,悬臂根部处裂 缝基本不再开展,最外侧斜裂缝沿着最外侧加载点至盖 梁底面最下排钢绞线锚固位置斜向将盖梁剪断,与斜裂 缝相交的箍筋被拉断,斜裂缝下缘混凝土被压溃,使盖 梁呈现剧烈的剪扭破坏形态。
- ✓ 经分析判断这一脆性破坏模态是由于缩尺后盖梁底面因 锚固底排钢绞线而预留的齿块挖空了截面,对盖梁截面 削弱较大引起的,使此处成为盖梁的薄弱环节,并最终 先于悬臂根部位置破坏。









PB-3 C60 混凝土 U 型截面空心盖梁试件破坏形态:

(a) 整体破坏形态;(b) 下排钢绞线锚固处;(c) 破坏斜裂缝;(d) 南侧;(e) 北侧

## 试验结果分析——U型截面空心盖梁试件 (C80混凝土)











PB-4 C80 混凝土 U 型截面空心盖梁试件裂缝模态示意图

- 加载至工况3(荷载准永久组合)不久后,C80混凝土U型 截面空心盖梁试件悬臂根部盖梁顶面首先开裂。
- 继续加载,两支撑墩柱中间也出现裂缝,悬臂根部裂缝 的数量增多加密,开裂位置逐渐由悬臂根部往端部发展, 最远达到了外侧空腔的中间。总体而言,悬臂段裂缝有 向悬臂根部下缘汇集的趋势。
- 进一步增大荷载至1.7倍荷载基本组合,悬臂段裂缝有向 悬臂根部汇集的趋势。总体而言,试件呈现弯曲破坏形态。



PB-4 C80 混凝土 U 型截面空心盖梁试件破坏形态:(a) 整体破坏形态;(b) 悬臂根部; (c) 跨中底面;(d) 外侧空腔;(e) 悬臂根部空腔;(f) 跨中空腔

## 试验结果分析——倒U型截面空心盖梁试件(C80混凝土)





PB-5 C80 混凝土倒 U 型截面空心盖梁试件裂缝模态示意图

- 加载至工况3(荷载准永久组合)不久后,C80混凝土倒U  $\geq$ 型截面空心盖梁试件悬臂根部盖梁顶面首先开裂。
- 继续加载,两支撑墩柱中间也出现裂缝,悬臂根部裂缝  $\geq$ 的数量增多加密,开裂位置逐渐由悬臂根部往端部发展, 最远达到了最外侧空腔的中间。
- 进一步增大荷载至1.7倍荷载基本组合,1面裂缝分布有  $\geq$ 向底部汇集的趋势,角部压碎,纵筋外露。总体而言, 试件呈现弯曲破坏形态。





PB-4 C80 混凝土 U 型截面空心盖梁试件破坏形态:

(c)

(a) 整体破坏形态; (b) 内外侧空腔间隔板; (c) 悬臂根部; (d) 跨中空腔底面





#### 各试件承载力峰值统计表

| 方案     | 东侧极限<br>荷载(kN) |     | 西侧极限<br>荷载(kN) |      | 基本组合<br>(kN) |     | 东侧极限/基<br>本组合 |      | 西侧极限/基本组<br>合 |      |
|--------|----------------|-----|----------------|------|--------------|-----|---------------|------|---------------|------|
|        | 边侧             | 内侧  | 边侧             | 内侧   | 边侧           | 内侧  | 边侧            | 内侧   | 边侧            | 内侧   |
| 整体预制   | 1606           | 883 | 1606           | 883  | 671          | 438 | 2.39          | 2.02 | 2.39          | 2.02 |
| 分片盖梁   | 1337           | 873 | 1543           | 1007 | 671          | 438 | 1.99          | 1.99 | 2.30          | 2.30 |
| C60U形  | 1032           | 730 | 954            | 588  | 638          | 403 | 1.62          | 1.81 | 1.50          | 1.46 |
| C80U形  | 1107           | 713 | 1107           | 713  | 638          | 403 | 1.74          | 1.77 | 1.74          | 1.77 |
| C80倒U形 | 1133           | 696 | 1133           | 696  | 673          | 415 | 1.68          | 1.68 | 1.68          | 1.68 |

#### 盖梁试件的力学性能比较

| ᆇᇭᆇᇳᆈ  | 承载   | 载力(kN.m) |      | 活载挠度   | ₹ (mm) | 开裂弯矩(kN.m) |      |  |
|--------|------|----------|------|--------|--------|------------|------|--|
|        | 试验值  | 计算值      | 比值   | 试验值    | 计算值    | 试验值        | 计算值  |  |
| 整体实心   | 4174 | 2999     | 1.39 | 1/1849 | 1/852  | 1961       | 1918 |  |
| 分片预制   | 3585 | 2999     | 1.20 | 1/841  | 1/852  | 1389       | 1918 |  |
| C60U型* | 3001 | 2473     | 1.21 | 1/839  | 1/653  | 1486       | 1466 |  |
| C80U型  | 3009 | 2415     | 1.25 | 1/897  | 1/589  | 1402       | 1388 |  |
| C80倒U型 | 3417 | 2817     | 1.21 | 1/615  | 1/560  | 1658       | 1621 |  |

# 数值分析——构造,单元及网格划分





轻量化盖梁有限元模型



## 数值分析——数值分析结果与试验结果对比



(a) 整体预制盖梁试件



(b) U 型截面空心盖梁试件(C60 混凝土)



(c) U 型截面空心盖梁试件(C80 混凝土)



(d) 倒 U 型截面空心盖梁试件(C80 混凝土)

承载力峰值时盖梁试件最大塑性拉应变分布(有限元结果与试验结果对比)

## 数值分析——数值分析结果与试验结果对比







(c)U 型截面空心盖梁试件(C60 混凝土) (d) U 型截面空心盖梁试件(C80 混凝土)(e)倒 U 型截面空心盖梁试件(C80 混凝土)

各盖梁试件荷载-位移曲线 (有限元结果与试验结果对比)

## 数值分析——空心盖梁与实心盖梁受力性能对比





各盖梁试件荷载-位移曲线(空心截面与实心截面对比)

根据荷载-位移曲线计算得到盖梁悬臂根部的抗弯承载力,计 算结果表明:U型截面空心盖梁悬臂根部抗弯承载力较实心盖 梁减小11.2%,倒U型截面空心盖梁悬臂根部抗弯承载力较实心 盖梁减小17.7%。

### 数值分析——足尺轻量化盖梁全过程受力性能分析





U 型截面空心盖梁(C80 混凝土)破坏过程

倒 U 型截面空心盖梁(C80 混凝土)破坏过程

合: 7: 荷载标准组合: 8: 荷载基本组合: 9: 1.7倍荷载基本组合

# 内容导览: 3.1 试验方案 3.2 试验研究 3.3 数值分析 3.4 设计验算

# 第三部分 空心立柱的试验与理论研究



 选取墩柱反弯点以下的5m高桥墩和承台部分进行横桥向研究;选择10m高桥墩进行顺桥向研究。原型桥墩方案设计 方案是:墩高为10米,边长为2.5m、壁厚为0.4m的空心正 方形截面。相似比1/3。



# 试验方案-加载设计





- 试件所用混凝土的强度等级均为C40,外圈纵筋采用24根 直径20mm的HRB400热轧带肋钢筋,内圈纵筋采用20根直 径10mm的HRB400热轧带肋钢筋。同时考虑内外圈纵筋, 空心截面配筋率是2.26%。只考虑外圈纵筋,空心截面配 筋率是1.87%。箍筋、拉筋都采用直径8mm的热轧光圆钢 筋。塑性铰区取为0.8m,箍筋间距是100mm,体积配箍 率是2.89%,方向配箍率是0.6%。其余箍筋间距是150mm,体积配箍率是1.92%,方向配箍率是0.41%。
- 原型恒载轴压力范围是9500kN~10456kN,模型轴压力选 为1055~1161kN,轴压比为10.6%~11.6%。本试验选取轴 压力为1161kN。







(b) 实心部分 整体现浇立柱截面配筋设计

# 试验方案-加载设计











**1-1**1:20





空心墩与承台配筋方案



<u>3-3</u>1:20







选取壁厚、实心段范围、施工方式、(无实心段、单 排配筋)混凝土保护层厚度、剪力键等作为研究参数,设 计7个试件。其中前2个是整体现浇桥墩,后5个是预制拼 装空心桥墩。



| 编号  | 试件名称                  | 高度    |
|-----|-----------------------|-------|
| 试件1 | 现浇空心墩柱(无实心段、双排配筋)     | 2.67m |
| 试件2 | 现浇空心墩柱(带实心段、单排配筋)     | 2.67m |
| 试件3 | 预制空心桥墩(无实心段、单排配筋)     | 2.67m |
| 试件4 | 预制空心桥墩(实心段预制、单排配筋)    | 2.67m |
| 试件5 | 厚壁预制空心桥墩(壁厚15cm、单排配筋) | 2.67m |
| 试件6 | 大剪跨比预制空心桥墩(无实心段、单排配筋) | 4.32m |
| 试件7 | 小剪跨比预制空心桥墩            | 1.83m |











试件2











试件6









试件加载示意图



- 水平加载分为力加载和位移加载两个阶段,可以按照下面的方式执行。
- 第一阶段:力控制加载。加载时,每级荷载增量为25kN,分级加载至墩身开裂。该阶段重点研究运营期间正常使用状态的特征。
- 第二阶段: 位移控制, 试件在同时承受轴压和单轴弯曲循环加载方式下直至破坏。首先确定屈服位移, 然后以0.5、1、1.5, 2、3、4、5、6……倍屈服位移加载, 每个等级循环3次, 直到构件达到指定的位移或者荷载下降到最大荷载的80%, 见图2.21, 其中每级荷载首次达到最大值的正向和负向时, 暂停观察裂缝。通过试验以获得其逐步损伤过程以及力-位移曲线, 该阶段重点研究地震破坏状态下的特征。

# 试验结果-S1试验现象和损伤状态





S1试件裂缝分布图 现浇空心墩柱(无实心段、双排配筋)

# 试验结果-S2试验现象和损伤状态





东

北

S2试件裂缝分布图 现浇空心墩柱(带实心段、 单排配筋)

南

西





(c) 混凝土严重破裂

(d) 东侧纵筋断裂



# 试验结果-S3试验现象和损伤状态





(b) 套筒下方纵筋混凝土破碎 (c) 套筒下方纵筋断裂





S3试件最终破坏图 预制空心桥墩(无实心段、单排配筋)

(d) 套筒下方纵筋剪断

局部破坏

# 试验结果-S4试验现象和损伤状态





S4试件最终破坏图 预制空心桥墩(有实心段、单排配筋)

局部破坏

# 试验结果-S5试验现象和损伤状态





S5试件最终破坏图 厚壁预制空心桥墩(壁厚15cm、单排配筋)



(b) 套筒下方纵筋发生应变渗透和剪切变形 **局部破坏** 

# 试验结果-S6试验现象和损伤状态





S6试件裂缝分布图 大剪跨比预制空心桥墩(无实心段、单排配筋)



局部破坏

# 试验结果-S7试验现象和损伤状态





西

南

东

北



## 小剪跨比预制空心桥墩 局部破坏

## 试验结果-整体现浇与灌浆套筒桥墩破坏模





#### 整体现浇试件S2裂缝分布图



灌浆套筒试件S3裂缝分布图



## 首次开裂荷载统计表/kN

| 试件         | 正向荷载 | 正向裂缝位置   | 负向   | 负向裂缝位置        |
|------------|------|----------|------|---------------|
| <b>S1</b>  | 550  | 墩底与承台之间  | -500 | 墩底与承台之间       |
| S2         | 550  | 墩底与承台之间  | -500 | 墩底与承台之间       |
| S3         | 500  | 坐浆料      | -700 | 墩底和坐浆料        |
| S4         | 700  | 承台与坐浆料界面 | -625 | 墩身, 坐浆料-650kN |
| S5         | 600  | 承台与坐浆料界面 | -600 | 墩底和坐浆料        |
| <b>S6</b>  | 325  | 墩底和坐浆料   | -300 | 墩底和坐浆料        |
| <b>S</b> 7 | 990  | 墩身       | -800 | 墩身            |



## 各个试件的五级别状态对应偏移率(%)

| 损伤级别        | S1   | S2   | S3   | S4   | S5   | S6   | S7   |
|-------------|------|------|------|------|------|------|------|
| 开裂          | 0.44 | 0.41 | 0.58 | 0.57 | 0.77 | 0.46 | 1.16 |
| 屈服          | 1.01 | 0.98 | 1.13 | 1.17 | 1.13 | 0.84 | 1.87 |
| 塑性铰开<br>始形成 | 2.07 | 2.07 | 2.39 | 2.17 | 2.54 | 2.05 | 3.25 |
| 塑性铰完<br>全形成 | 3.20 | 3.35 | 3.04 | 3.41 | 3.07 | 3.47 | 3.45 |
| 强度退化        | 4.15 | 4.15 | 3.47 | 4.28 | 3.59 | 4.11 | 3.52 |

注: 偏移率=水平位移/墩高×100%









(b) S2和S3



(a) S1和S2



(c) S3和S4

(d) S3和S5





(e) S3和S6

(f) S3和S7

#### 各个试件荷载位移滞回曲线

总体而言, 剪跨比为2的前5个空心墩试件的滞回环形状呈弓形, 捏缩 现象比较明显, 且从弓形逐步发展为类似反S形。剪跨比为4空心墩试 件S6滞回环呈反S形。空心墩的滞回环饱满程度比实心桥墩要小。









(a) S1, S2, S3, S4, S5试件 (b) S3, S6, S7试件

各个试件荷载位移骨架曲线

# 试验结果分析——特征值比较





比较S1和S2, S2有实心段,所以S2的延性系数比S1高;同样比较S3和S4,S4也有 实心段,所以S4的延性系数比S3高,说明混凝土墩底实心段的设置对提高整体现浇桥 墩和灌浆套筒预制拼装桥墩的延性是有利的。比较不同剪跨比的试件S7,S6和S3,发 现在剪跨比1-4的范围内,剪跨比越大,延性系数越高。对于不同壁厚的预制拼装试件 S3和S5,发现提高壁厚可以缓解混凝土受压区的压碎,提高预制拼装桥墩的承载力和 延性。

| 钢筋         | 屈服   | 状态  | 峰值   | 荷载   | 峰值   | 延性   |     |
|------------|------|-----|------|------|------|------|-----|
| 应变         | 位移   | 荷载  | 位移   | 荷载   | 位移   | 荷载   | 系数  |
| S1         | 16.7 | 713 | 36.2 | 1200 | 67.1 | 960  | 4.0 |
| <b>S2</b>  | 16.2 | 729 | 33.8 | 1137 | 69.6 | 910  | 4.3 |
| <b>S</b> 3 | 18.9 | 846 | 38.4 | 1092 | 58.2 | 874  | 3.1 |
| S4         | 19.7 | 798 | 35.8 | 1063 | 71.5 | 851  | 3.6 |
| <b>S5</b>  | 18.6 | 777 | 38.7 | 1124 | 59.7 | 899  | 3.2 |
| <b>S6</b>  | 33.6 | 512 | 62.3 | 570  | 135  | 456  | 4.0 |
| <b>S7</b>  | 16.3 | 882 | 27.0 | 1541 | 29.3 | 1232 | 1.8 |

#### 表4.1 根据纵筋应变测试结果进行的计算

| 编号   | 试件名称                      |
|------|---------------------------|
| 试件S1 | 现浇空心墩柱(无实心<br>段、双排配筋)     |
| 试件S2 | 现浇空心墩柱(带实心<br>段、单排配筋)     |
| 试件S3 | 预制空心桥墩(无实心<br>段、单排配筋)     |
| 试件S4 | 预制空心桥墩(实心段<br>预制、单排配筋)    |
| 试件S5 | 厚壁预制空心桥墩(壁厚<br>15cm、单排配筋) |
| 试件S6 | 大剪跨比预制空心桥墩<br>(无实心段、单排配筋) |
| 试件S7 | 小剪跨比预制空心桥墩                |

# 试验结果分析——截面分析模型



南京工業大學







(a) 空心双层钢筋S1 (b) 空心单层钢筋S2 (c) 空心灌浆套单层钢筋S3、S6、S7





(d) 实心段灌浆套单层钢筋S4 (e) 空心厚壁灌浆套单层钢筋S5 截面模型示意图



## 公式计算与试验结果的比值

| 试件<br>名称   | 荷载   | (公式/访 | 式验)  | 位移(<br>验 | 公式/试<br>) | 延性系数<br>(公式/试验) |  |
|------------|------|-------|------|----------|-----------|-----------------|--|
|            | 屈服   | 峰值    | 极限   | 屈服       | 极限        |                 |  |
| S1         | 0.88 | 0.89  | 0.89 | 0.53     | 0.41      | 0.77            |  |
| <b>S2</b>  | 0.79 | 0.81  | 0.81 | 0.55     | 0.47      | 0.85            |  |
| <b>S</b> 3 | 0.72 | 0.79  | 0.79 | 0.48     | 0.44      | 0.91            |  |
| S4         | 0.72 | 0.84  | 0.85 | 0.45     | 0.43      | 0.95            |  |
| <b>S</b> 5 | 0.87 | 0.88  | 0.88 | 0.48     | 0.47      | 0.98            |  |
| <b>S</b> 6 | 0.65 | 0.96  | 0.96 | 0.8      | 0.54      | 0.68            |  |
| <b>S</b> 7 | 1.09 | 1.04  | 1.04 | 0.2      | 0.43      | *               |  |

注\*: 剪切试件S7,不需要计算延性。

## 试验结果分析——有限元建模







S1双排纵筋



有实心段





壁厚加厚



剪跨比为1





混凝土不同剪跨比的等效塑性应变分布

剪跨比为4









剪跨比为4

剪跨比为2

钢筋等效应力

## 试验结果分析-

-典型有限元分析结果













- ▶设计验算公式与试验结果的对比
  - 模型相似比1:3;
  - 内力相似比1:9
  - 弯矩相似比1:27
  - 材料超强系数1.24
  - 材料分项系数1.45

|   |     |               | 对应原植 | 莫型水平 |       |       |
|---|-----|---------------|------|------|-------|-------|
|   |     |               | ナ    | 5    | 对应原植  | 莫型弯矩  |
| 序 | 试件编 |               |      |      |       |       |
| 号 | 号   | 试件描述          |      |      |       |       |
| 1 | S1  | 现浇空心墩柱(无实心段)  | 2503 | 6007 | 12013 | 28832 |
| 2 | S2  | 现浇空心墩柱(带实心段)  | 2503 | 5691 | 12013 | 27318 |
| 3 | S3  | 预制空心桥墩(无实心段)  | 2503 | 5466 | 12013 | 26237 |
| 4 | S4  | 预制空心桥墩(实心段预制) | 3128 | 5321 | 15017 | 25540 |
| 5 | S5  | 壁厚加厚预制空心桥墩    | 3003 | 5626 | 14416 | 27006 |
| 6 | S6  | 大剪跨比预制空心桥墩    | 1502 | 2853 | 14056 | 26706 |
| 7 | S7  | 小剪跨比预制空心桥墩    | 4004 | 7714 | 7568  | 14579 |





| MA                                    | Ń                      | 尾凝土抗)                 | 玉强度检测               | 则报告                                    |             | T                  |  |
|---------------------------------------|------------------------|-----------------------|---------------------|----------------------------------------|-------------|--------------------|--|
| 委托州 医 38                              | 4.44                   |                       | 第1页共1页              |                                        | 委托编号:       | G-HNT190165        |  |
| · · · · · · · · · · · · · · · · · · · | #                      |                       | 工程连续号:              |                                        | 报告编号:       | GHNT190180         |  |
| 安托単位                                  | 上海公路桥梁(集]              | 团)有限公司                |                     | 1                                      |             | 2185 J1            |  |
| 工程治标                                  | 昆阳路越江及配套注              | 道路工程                  |                     |                                        | -           |                    |  |
| 山 在 地 山                               | Late A peter on a set  | The selection of some |                     |                                        | 委托日期        | 2019.01.31         |  |
| 제품 그 과학 신호                            | 工商公路桥采 (集)             | <b>加)有限公司</b>         |                     |                                        | 报告日期        | 2019.02.21         |  |
| 样品编号                                  | d1240                  | 温度等级                  | C40                 | 样品视格                                   | 150mm       | ×150mm×150mm       |  |
| 生产单位                                  | 上海城建物资有限。              | 公司隊裏湿凝十分公             | ·司                  | 各來证号                                   | BH (#       | 2) -08-20160072    |  |
| 工程部位                                  | 预制立柱P10L-F             | A ATREMETICALLE / A   |                     | 和麻血 J<br>翻度/mm                         |             | 210                |  |
| 成刑口物                                  | 2019.01.22             |                       | 2010.02.10          | 8A 80 /4                               |             | 28                 |  |
| 游·拉友州                                 | 2019.01.22             | 位荷口州                  | 2019.02.19          | 11000000000000000000000000000000000000 | H-2星的 A-Da  | 计和设计程序             |  |
| 91-1/ 28-1T                           | 1120.3                 | 50.2                  | 29U2 1 GRC III MIFA | The state ma                           | A BRIXING A | A2304 100 11 20030 |  |
| 标准统计                                  | 1084.7                 | 48.2                  | 40.7                | 40                                     | 7           | 124                |  |
| 424111-31-32                          | 1139.6                 | 40.2                  | 49.7                | 49                                     | .,          | 124                |  |
|                                       | 115710                 | 50.0                  |                     |                                        |             |                    |  |
| 样品编号                                  | d1241                  | 器度氣体                  | C40                 | 样島網絡                                   | 150mm       | <150mm×150mm       |  |
| 生产单位                                  | 上海城建物资有限               | 公司諸裏混凝土分次             | ्ता<br>ज            | 大安江县                                   | BH (T       | 令) -08-20160072    |  |
| 工程部位                                  | 预制立柱P101-F             |                       |                     | 和床ac 5<br>和唐/mm                        | DIT CL      | 210                |  |
| 成刑日期                                  | 2019.01.22             | 检测日期                  | 2019 02 19          | 於期/d                                   |             | 28                 |  |
| 差护各件                                  | 破坏荷载/kN                | 抗压强度/MPa              | 强度代表值/MPa           | 折合标准试                                  | 快强度/MPa     | 达到设计强度             |  |
| 91.9 45.11                            | 1084.1                 | 48.2                  |                     |                                        |             | AL 24 64 11 201/30 |  |
| 标准养护                                  | 1092.6                 | 48.6                  | 48.9                | 48                                     | .9          | 122                |  |
| 10/14-31-2                            | 1125.8                 | 50.0                  |                     |                                        |             |                    |  |
|                                       |                        |                       |                     |                                        |             |                    |  |
| 取样单位                                  | 上海公路桥梁(集               | 团)有限公司                |                     | 取样人及                                   | 证书编号        | 耿卫国 5219           |  |
| 见证单位                                  | 中铁武汉大桥工程               | 咨询监理有限公司              |                     | 见证人及                                   | 证书编号        | 王要約 3261           |  |
| 检测方法                                  | JTG E30-2005           |                       |                     | 评定                                     | 依据          |                    |  |
| 12 00 25 124                          | 未经本检测机构批准              | 住,部分复制本检测             | 报告无效。               | 1                                      |             | (电脑吊号,             |  |
|                                       | 1 44-301 40 40 40 40 - | 新政281号                |                     |                                        |             |                    |  |
| 检测机构信息                                | 2. 服务由关 250124         | 100 2 前船, 20          | 0002                |                                        |             |                    |  |
|                                       | 2. 联愁电话: 33013:        | 966 J.Mp.Mg: 20       | 0092                |                                        | -           |                    |  |
| 备 注                                   | 6                      | the                   |                     |                                        |             |                    |  |
| 备 注<br>检测机构专用                         | #:                     | 推進項券:                 | 385                 | L #K                                   | ~ ,         | 1 <b>11-5</b> 3    |  |



#### ▶设计验算公式与试验结果的对比

• 抗弯承载能力对比

分析原型墩, 在原型轴向力10456KN作用下, 根据参考JTG 3362计算得到的破坏弯矩数 值;

经过试验结果与规范公式结果对比表明,在给定轴向力作用下,规范公式分析的承载 能力弯矩数值计算结果比试验结果S1~S6偏小(6%至15%)。

| 序号 | 原型墩 | 原型墩描述                 | 承载能力弯矩<br>Ⅲ (KNm) | 轴向力(KN) | 计算长度(m) |
|----|-----|-----------------------|-------------------|---------|---------|
| 1  | S1  | 现浇空心墩<br>柱(无实心<br>段)  | 24500             | 10456   | 9.6     |
| 2  | S2  | 现浇空心墩<br>柱(带实心<br>段)  | 24500             | 10456   | 9.6     |
| 3  | S3  | 预制空心桥<br>墩(无实心<br>段)  | 24500             | 10456   | 9.6     |
| 4  | S4  | 预制空心桥<br>墩(实心段<br>预制) | 24500             | 10456   | 9.6     |
| 5  | S5  | 壁厚加厚预<br>制空心桥墩        | 22500             | 10456   | 9.6     |
| 6  | S6  | 大剪跨比预<br>制空心桥墩        | 23500             | 10456   | 18.72   |
| 7  | S7  | 小剪跨比预<br>制空心桥墩        | 24500             | 10456   | 3.78    |



#### ▶设计验算公式与试验结果的对比

• 裂缝宽度对比

参考JTG 3362-2018规范6.4.3条,裂缝宽度影响系数包括钢筋应力、最外排钢筋保护层 厚度c、纵向受拉钢筋直径,以及纵向受拉钢筋的有效配筋率。

实验模型中应力与实际结构的比值为1:1;配筋率比值1:1;保护层厚度c:原型结构 74mm,试验模型37mm;钢筋直径d:原型结构40mm,试验模型20mm; 因此,按照规范条文计算,同样应力作用下,原型结构裂缝宽度/试验模型裂缝宽度=2

0

考虑到试验中,肉眼可观察到的裂缝范围一般为0.02至0.06mm,我们假设观测到的开 裂弯矩我们按照0.06mm取值,对应于实际结构为0.12mm,如果考虑长期影响系数1.5 ,即为0.18mm。

在弯矩在14000KN.m时,按照规范尚不需要验算裂缝,超过该数值时,裂缝宽度接近 0.5,远大于观测到的裂缝宽度。而14000KN.m的弯矩数值与S1-S6试验模型中的数值比 值在0.93至1.17之间,说明针对这些模型,按照开裂弯矩验算阈值控制设计方案基本可 靠。对于小剪跨比(1:1)模型,开裂弯矩只有大剪跨比一半左右,通过计算弯曲应力计算 裂缝的方式不可靠。

0



### ▶设计验算公式与试验结果的对比

• 破坏剪力对比

(1) CJJ 166-2011 城市桥梁抗震设计 规范7.4.2条计算

#### 计算数值9073KN,比试验值高出18%

矩形截面  $A_{v}$ 4.52 cm2 b 2500 cm s 10 cm  $\rho_s = \frac{4A_v}{bs}$ 7.24E-04  $\mu_{\Delta}$  $f_{yh}$ <mark>280</mark> Mpa  $f_{cd}$ 18.4 Mpa  $\mu_{d}$ 2.98  $\lambda = \frac{\rho_s f_{yk}}{10} + 0.38 - 0.1\mu_a$ 0.10 λ  $\stackrel{A_{s}}{P_{c}^{s}}$ 33600 cm2 10456 KN  $\frac{p}{v_s = \lambda(1 + \frac{p}{1.38 \times A_s}) \sqrt{f_{ed}}} =$ 26880 cm2 0.54 $h_0$ 2450 cm2  $V_s = 0.1 \times \frac{A_v f_{yh} h_0}{1 \times 1}$ 9224.19 KN  $V_{e} = 0.1 v_{e} A_{e}$ 1450.45 KN  $V_u = \phi(0.1v_eA_e + 0.1 \times \frac{A_v f_{yh} h_0}{2})$ 9073.44 KN

#### (2) JTG 3362-2018 公路钢筋混凝土及预 应力混凝土桥涵设计规范

为实验值试验值96%. 与实验结果对比效

|     | 第5.2.9条 |           |             |                                   |                                                                       |
|-----|---------|-----------|-------------|-----------------------------------|-----------------------------------------------------------------------|
| 果较好 |         | 矩形、TĦ     | 《和工字册       | 補面的受弯                             | 构件,斜截面承载力计算:                                                          |
|     |         | 采用公式      | 7.V.        | $\leq V_{ss} + V_{st} +$          | V                                                                     |
|     | -       |           | 12          | 0.45                              | 10-311 K2 0 6 m / 6 - 6                                               |
|     |         |           | $V_{II} =$  | $\alpha_1 \alpha_2 \alpha_3 0.45$ | $(10  \partial n_0 \sqrt{(2+0.0P)} \sqrt{f_{eul} \rho_{\mu} f_{\mu}}$ |
|     | -       |           | P=1         | 00 <i>p</i>                       |                                                                       |
|     |         |           | ρ=(.        | $A_p + A_{Pb} + A_{Pb}$           | ;)/bh <sub>0</sub>                                                    |
|     | _       | 输入数时民     |             |                                   |                                                                       |
|     | -       | THE COULD | Vd=         | 0                                 | KN                                                                    |
|     |         |           | fen k=      | 40                                | MPa                                                                   |
|     |         |           | h=          | 2500                              | mm                                                                    |
|     |         |           | he=         | 2500                              | mm                                                                    |
|     | -       |           | 2           | 1.0                               | ******                                                                |
|     |         |           | a1=         | 1.0                               |                                                                       |
|     |         |           | a2=         | 1.0                               |                                                                       |
|     |         |           | a2-<br>a3=  | 1.1                               |                                                                       |
|     |         |           | An=         | 0.0                               | mm2                                                                   |
|     |         |           | Anh=        | 0.0                               | mm2                                                                   |
|     |         |           | As=         | 0.0                               | mm2                                                                   |
|     |         |           | fsv=        | 280                               | MPa                                                                   |
|     |         | 调整数据:     |             |                                   |                                                                       |
|     |         |           | <b>箍筋d-</b> | 12                                | mm                                                                    |
|     |         |           | 支約n-        | 4                                 | mm                                                                    |
|     |         |           | Sv-         | 100                               | mm                                                                    |
|     |         |           | 面积          | 3360000.0                         | mm2                                                                   |
|     |         | 输出数据:     |             |                                   |                                                                       |
|     |         |           | ρ-          | 0                                 |                                                                       |
|     |         |           | P-          | 0                                 |                                                                       |
|     |         |           | P sv=       | 0.0057                            |                                                                       |
|     |         |           | Vcs=        | 7443                              | KN                                                                    |

## ▶验算方法和结论

- 承载能力验算
- JTG 3362-2018规范5.2.2条验算抗弯 JTG 3362-2018规范
- 是否需要抗裂验算

| В | Н | e/h(顺桥向) | 0.20 |
|---|---|----------|------|
| 2 | 2 | e/h(横桥向) | 0.13 |

• 裂缝宽度验算

结论:由以上结得,立柱正截面强度满足规范要求。e/h<0.55,立柱抗裂验算满足规范要求。

当矩形、T 形和 I 形截面偏心受压构件满足  $e_0/h \le 0.55$ ,或圆形截面偏心受压构件满足  $e_0/r \le 0.55$ ,可同不进行裂缝宽度验算。











- 1) 矩形空心墩首条裂缝均出现在承台和墩身的交界处。矩形空心墩达到极限状态时,箍筋和 拉筋出现较大变形或断裂现象,核心混凝土压碎。灌浆套筒预制拼装桥墩中的纵筋会发生较 大弯曲剪切变形,甚至拉断剪断。
- 2) 墩底实心段的构造和增加壁厚会缓解两侧腹板混凝土剥落范围。空心截面抗剪能力较实心 桥墩有一定程度削弱。
- 3)剪跨比为1的试件套筒下方的纵筋也没有发生剪切变形,原因是墩底与承台保持全截面接触,抗剪能力强,剪切变形集中在墩身。剪跨比为2的试件套筒下方的纵筋发生严重剪切变形, 甚至剪断,主要原因是变形较大时,塑性铰区混凝土开裂压碎,同时受弯变形后空心桥墩与承 台接触面积减小,导致抗剪能力显著下降。
- 4) 混凝土墩底实心段的设置对提高整体现浇桥墩和灌浆套筒预制拼装桥墩的延性是有利的。
   提高壁厚可以缓解受压区混凝土的压碎,提高截面承载力,提高预制拼装桥墩的延性。
- 5)单排配筋灌浆套筒预制拼装空心桥墩与同样构造的整体现浇桥墩的裂缝特征和破坏模式不同,但是承载力特征值接近,延性略差,是可行的预制拼装桥墩方式。塑性铰区域设置实心段、局部壁厚加厚、增加配箍率等对改善受力性能是有益的。
- 6)预制空心桥墩设计**可参考现有规范公式**,通过验算,本桥的预制桥墩设计满足要求。

# 第四部分 工程应用







































横桥向







横桥向(双立柱内侧)

















#### **加京フ葉大学** NANJING TECH UNIVERSITY

#### 示范工程-绍兴绿云路

#### 已完成施工图设计

#### 节约混凝土25%









